直线和圆的位置关系
张贞华
知识目标:
1.探索并了解直线和圆的三种位置关系.
2.了解切线,割线的概念。
3.能够利用直线和圆公共点个数来判断直线和圆的位置关系.
4.能够利用圆心到直线的距离来判断直线和圆的位置关系.
能力目标:
1.经历探索直线与圆位置关系的过程,培养学生的探索能力.
2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.
教学过程:
一、情境感知
观察日出过程中,太阳和地平线有几种位置关系,由此你能得出直线和圆有几种位置关系吗?
二、合作探究
问题1问题2 在纸上任意画一个圆,移动直尺并画出直线和圆的三种位置关系,观察直线和圆的公共点的个数发生了什么变化?
概念形成
图形 | |||
直线与圆公共点个数 |
|
|
|
直线与圆的位置关系 |
|
| |
公共点名称 |
|
|
|
直线名称 |
|
|
|
二、合作探究
问题2:问题3:同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现圆心O到直线l的距离为d与圆的半径有什么样的数量关系呢?
直线与圆的位置关系 d与r数量关系
①直线与圆 d r,
②直线与圆 d r ,
③直线与圆 d r。
总结:判定直线与圆的位置关系的方法有____种:
1、定义法:直线与圆的公共点个数
2、数量法:圆心到直线的距离与半径的大小关系.(应用更为广泛)
三 应用新知
1、已知圆的直径为13cm,设直线和圆心的距离为d :
1)若d=4.5cm ,则直线与圆______, 直线与圆有____个公共点.
2)若d=6.5cm ,则直线与圆______, 直线与圆有____个公共点.
3)若d= 8 cm ,则直线与圆______, 直线与圆有____个公共点.
2、已知⊙O的半径为5cm, 圆心O与直线AB的距离为d, 根据条件填写d的范围:
1)若AB和⊙O相离, 则 ;
2)若AB和⊙O相切, 则 ;
3)若AB和⊙O相交, 则 。
三 应用新知
题型1 直线与圆的位置关系的判断
在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,
以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?
(1)r=2cm;(2)r=2.4cm (3)r=3cm.
题型2 直线和圆的位置关系的动态问题
题型3 直线与圆的位置关系的实际应用
例3、由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴侵袭.近日,A城气象局测得沙尘暴中心在A城的正北方向240km的B处,以12km/h的速度向南偏东30°方向移动,距沙尘暴中心150km的范围为受影响区域.
(1)A城是否受到这次沙尘暴的影响,为什么?
(2)若A城受这次沙尘暴的影响,那么遭受影响的时间有多长?
五、感悟反思
1、从知识上:
2、数学思想方法
六 当堂反馈
和学乐练129-130,和师做能力提升和拓展探究,乐友完成基础训练和能力提升。
我仍在线
账号+密码登录
手机+密码登录
微信扫码登录
还没有账号?
立即注册